

Auger Electron Spectroscopy AES

SURFACE ANALYSIS

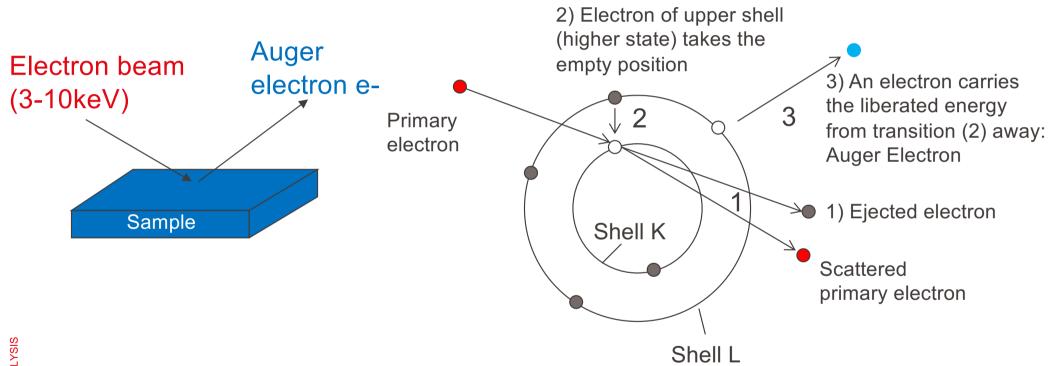
MSE-351

Anna Igual Munoz

Reference book

D. Briggs, M.P. Seah

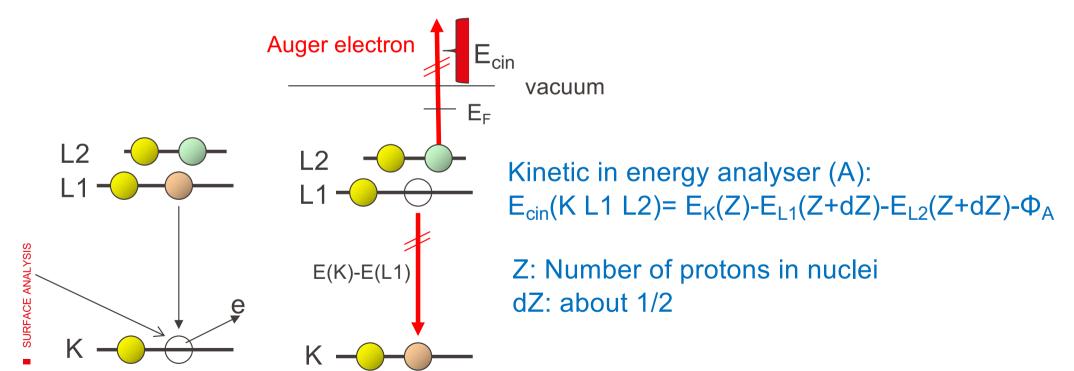
Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy


John Wiley & Sons (1994)

- 2. Instrumentation
- 3. Spectral acquisition and interpretation
- 4. Quantification
- 5. Depth profiling
- 6. Applications

Principle of AES

Auger KLL Transition



Analysis consists the spectrum of the electron as a function of their kinetic energy E_{kin} .

SURFACE ANALYSIS

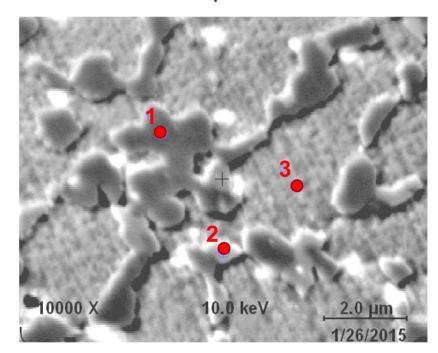
Auger electrons

Primary electron ejects electron in lower lying shell (here K-shell), an electron from a higher shell (here L-shell) makes a transition to the K-shell to fill the empty state. The liberated energy is taken by another electron from a higher shell (also L-shell in this case. Normally the two reacting electrons are from the same shell (same n), and leaves solid. This process is in competition with photon emission (fluorescence).

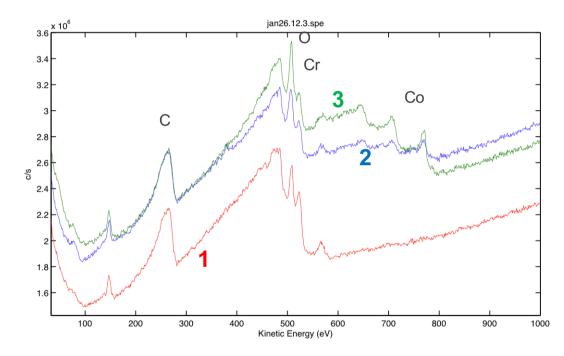
Auger Electron Spectroscopy (AES)

In relation to XPS

- Same vacuum requirements
- Similar electron energies and thus information depth
- Primary source: electrons
- Interpretation is more complicated, less popular than XPS
- Much finer primary beam → better lateral resolution (→ Scanning Auger Microscopy)
- More difficult to deal with insulating samples

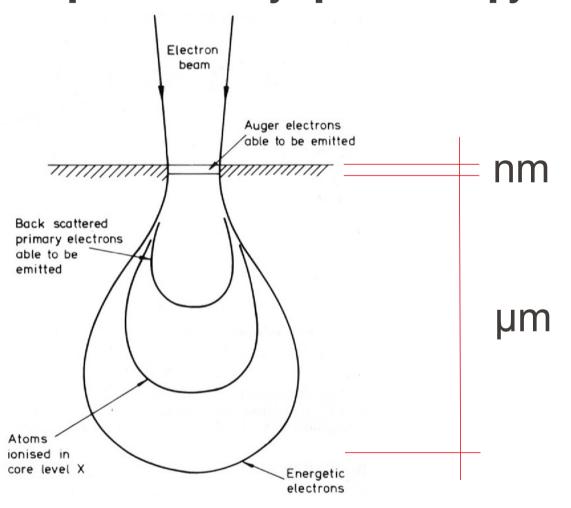

L

SURFACE ANALYSIS


Discovery: P. Auger in 1923 (gas) and by Lise Meitner in 1922 (she did not make enough noise). Harris 1967: Showed that AES is a good method for surface analysis.

Scanning Auger Microscopy (SAM)

Stellite alloy with CoCr metallic matrix and Cr and W carbide inclusions, corroded in sulphuric acid.

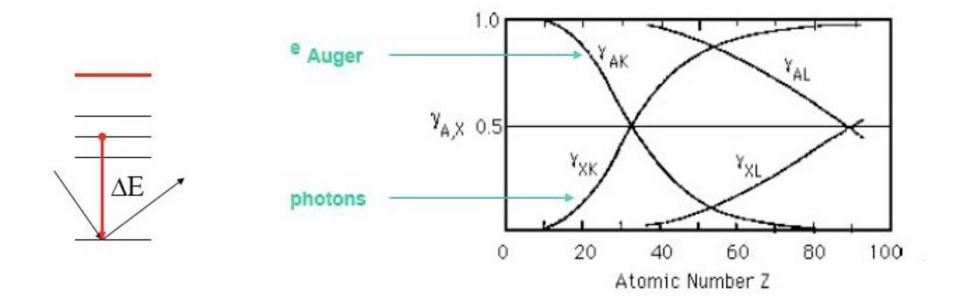


SEM image showing analysis points

AES spectra measured on single analysis points

EPFL Electron scattering in AES and EDX (Energy-dispersive X-ray spectroscopy

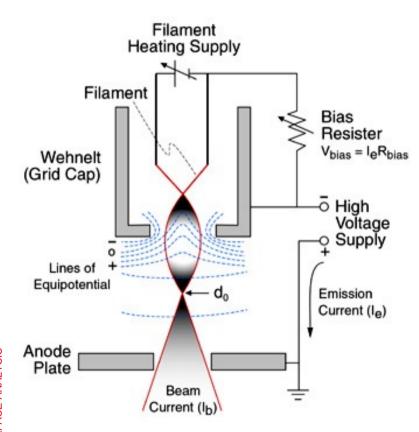
Ionised atoms may emit Auger electrons or X-Rays by fluorescence.


The mean free path of electrons is in the range of a few nanometres while X-rays can cross several µm.

Thus, AES is surface sensitive while EDX (X-Rays emitted by fluorescence) measures much deeper.

Thickness of Auger electrons for different primary energies and mono-atomic materials

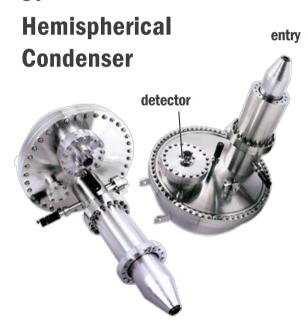
Depth (nm)	Primary energy (KeV)				
Z	2.5	5	10	15	
AI(13)	0.12	0.4	1.25	2.4	
Cu(29)	0.046	0.15	0.47	0.9	
Au(79)	0.027	0.088	0.28	0.54	


Auger vs. Fluorescence: transition probabilities

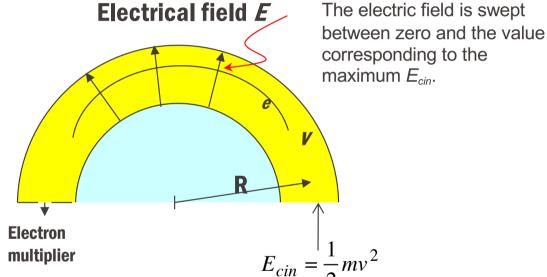
Auger: More likely for light elements, i.e. from Be to Ge.

- 1. Introduction AES vs other techniques
- 2. Instrumentation
- 3. Spectral acquisition and interpretation
- 4. Quantification
- 5. Depth profiling
- 6. Applications

Electron sources for AES

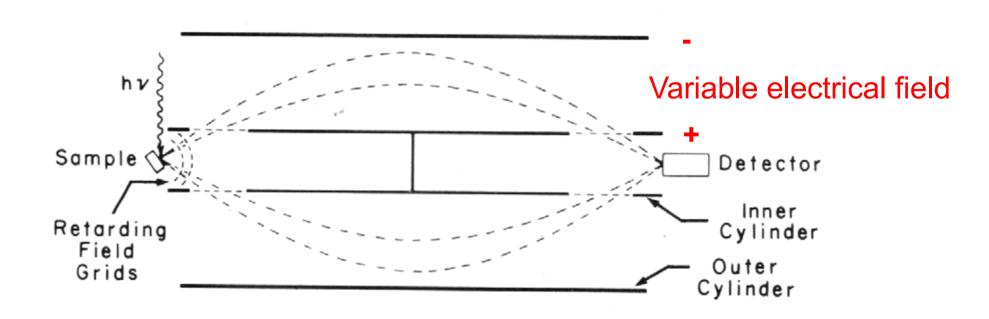


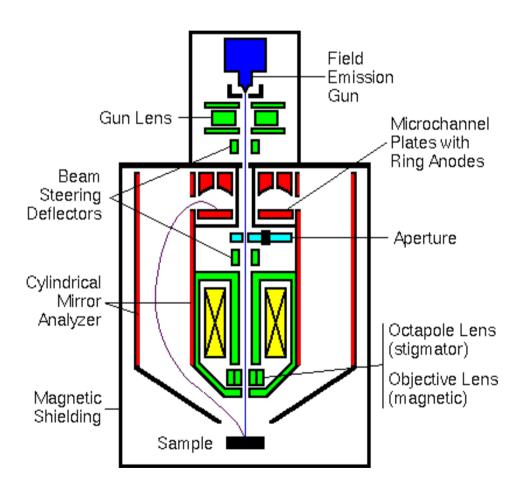
Types of filaments


- Tungsten cathode source filaments (cost effective, beam ~2 A/cm²)
- Lanthanum hexaboride (LaB6) cathodes (bright beams 100A/cm², narrow beams)
- Field Emission electron sources (very sharp tungsten tips with electrical fields >10⁷ V/cm and tunnelling emission, brightest beams 10³ to 10⁶ A/cm²). Very sensitive to contaminations.

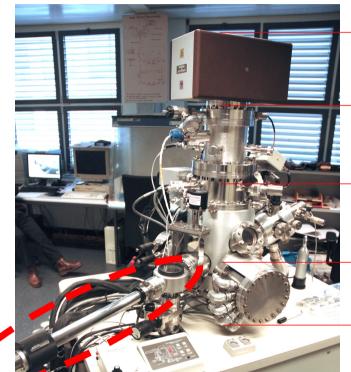
The Concentric Hemispherical Analyser CHA

To measure the number of photo-ejeted electrons as a function of their energy


CHA: Concentric hemispherical analyser


The electrons arriving at the detector (electron multiplier) have a kinetic energy of: $E_{cin} = \frac{1}{2}mv^2$ $-eE = m_e \frac{v^2}{R}$

$$E_{cin} = \frac{eER}{2}$$


Cylindrical Mirror Analyser (CMA)

Co-axial assembly of electron gun and CMA analyser

AES PHI680 instrument of EPFL-MHMC

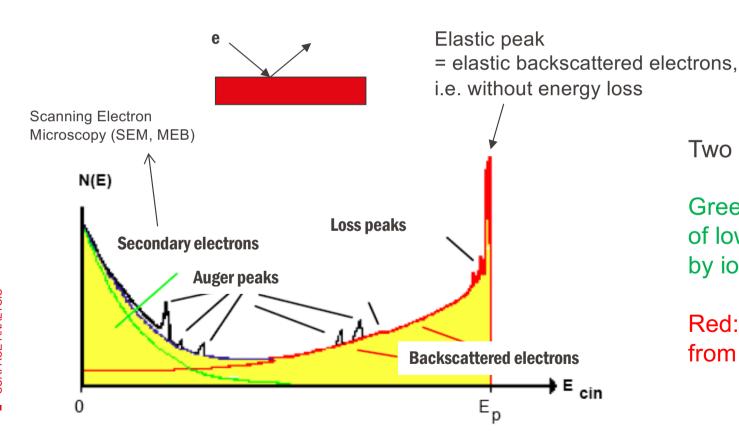
Vacuum pumps

Ion pump for FEG

Field Emission Gun and Cylindrical Mirror Analyzer

Analysis chamber

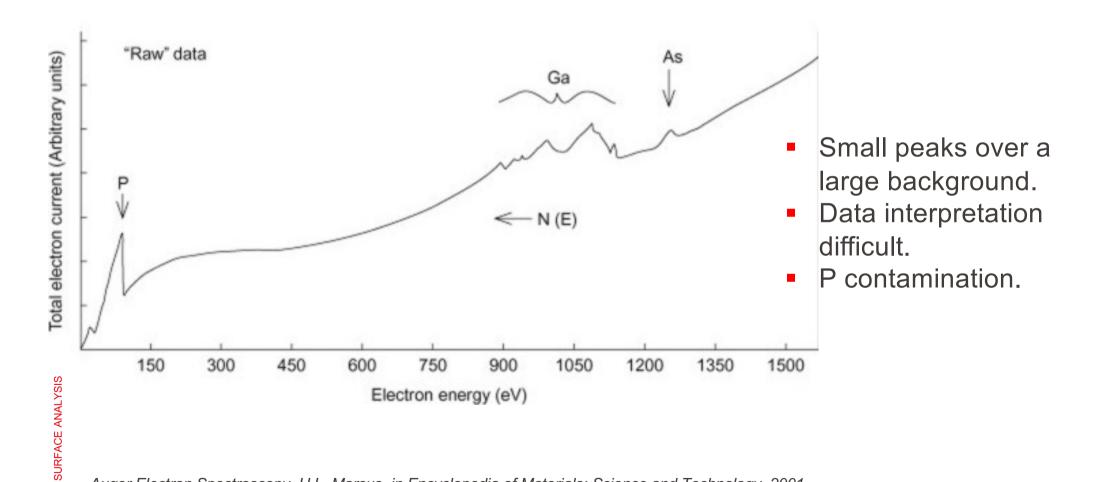
Sample stage (motorized)


Sample introduction system

- 1. Introduction AES vs other techniques
- 2. Instrumentation
- 3. Spectral acquisition and interpretation
- 4. Quantification
- 5. Depth profiling
- 6. Applications

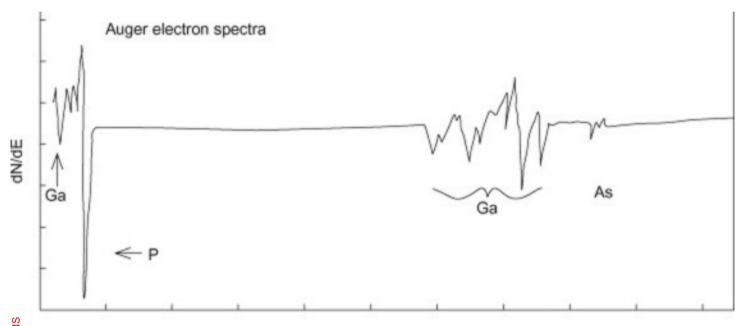
Secondary electron spectra

Emission of electrons after electron bombardment of solid material



Two major contributions:

Green: Secondary electrons of low energy being formed by ionization of atoms.


Red: Backscattered electrons from the primary beam

AES energy spectrum of a Gallium Arsenide surface

Auger Electron Spectroscopy, H.L. Marcus, in Encyclopedia of Materials: Science and Technology, 2001

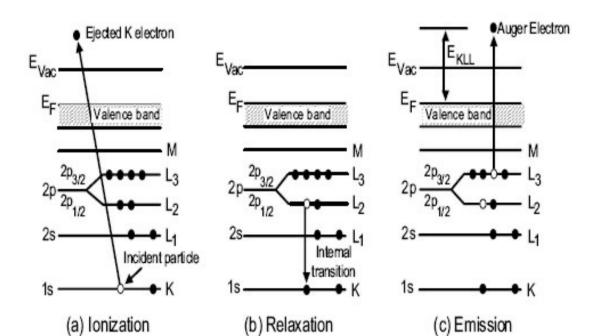
AES differential spectrum

 After differentiation dN/dE AES peaks are more pronounced and background is suppressed.

SURFACE ANALYSIS

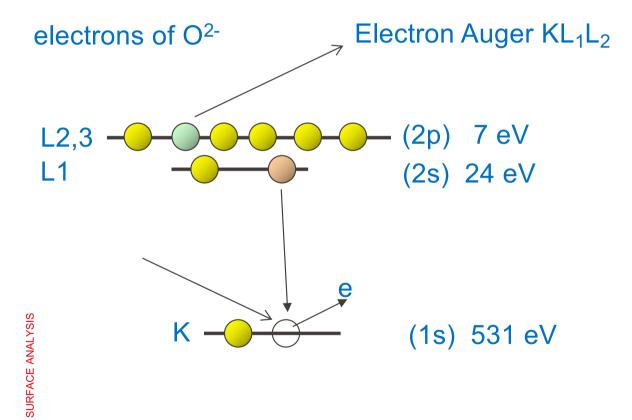
Auger Electron Spectroscopy, H.L. Marcus, in Encyclopedia of Materials: Science and Technology, 2001

AES peaks: nomenclature


Elements can exhibit several AES peaks (depending on involved electrons) that have to be precisely defined.

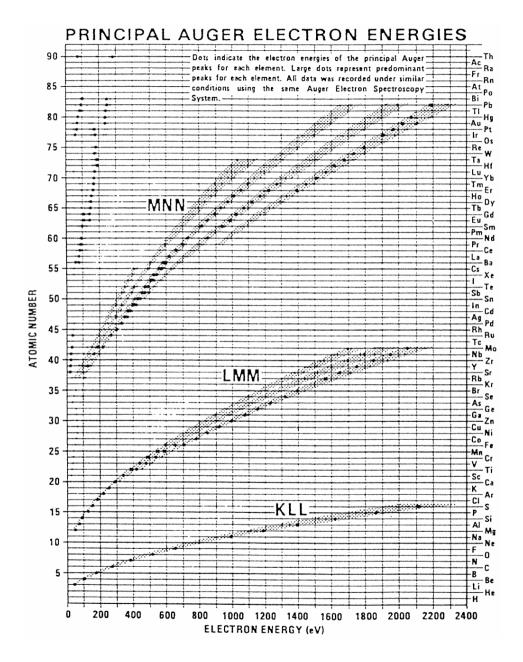
This is done by considering the quantum numbers n, l and j = l + s, where s is the spin number (either +1/2 or -1/2).

Table 3.1 X-ray and spectroscopic notation


Quantum numbers				to produce	
n	l	j	X-ray suffix	X-ray level	Spectroscopic level
1	0	1/2	1	K	$1s_{1/2}$
2	0	1/2	1	L_1	$2s_{1/2}$
2	1	$\frac{1}{2}$	2	L_2	$2p_{1/2}$
2	1	$\frac{3}{2}$	3	L_3	$2p_{3/2}$
3	0	$\frac{1}{2}$	1	M_1	$3s_{1/2}$
3	1	$\frac{1}{2}$	2	M_2	$3p_{1/2}$
3	1	3	3	M_3	$3p_{3/2}$
3	2	3	4	M_4	$3d_{3/2}$
3	2	3 2 5 2	5	M_5	$3d_{5/2}$
	etc.	2	etc.	etc.	etc.

Auger process vs nomenclture

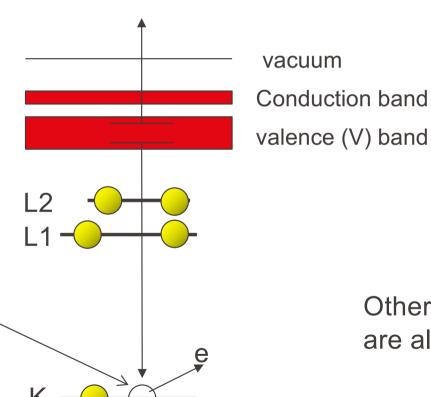
Quantum Numbers		Level Symbol	Auger	XPS Notation
ℓ	j		Notation	Ars Notation
0	1/2	$^{2}S_{\frac{1}{2}}$	K	$1 s_{1/2}$
0	1/2	² S _½	L ₁	2s _{1/2}
1	1/2	² P _½	L ₂	2p _{1/2}
1	3/2	² P _{3/2}	L ₃	2p _{3/2}
0	1/2	² S _{1/2}	M_1	3s _{1/2}
1	1/2	² P _½	M ₂	3p _{1/2}
1	3/2	² P _{3/2}	M ₃	3p _{3/2}
2	3/2	² D _{3/2}	M ₄	3 d _{3/2}
2	5/2	$^{2}D_{5/2}$	M ₅	3d _{5/2}
	0 0 1 1 0 1 1 2	ℓ j 0 1/2 0 1/2 1 1/2 1 3/2 0 1/2 1 1/2 1 3/2 2 3/2	ℓ j Level Symbol 0 1/2 ² S _½ 0 1/2 ² S _½ 1 1/2 ² P½ 1 3/2 ² P₃½ 0 1/2 ² S½ 1 1/2 ² P½ 1 3/2 ² P₃½ 2 3/2 ² D₃½	ℓ j Level Symbol Notation 0 1/2 2S _½ K 0 1/2 2S _½ L ₁ 1 1/2 2P _½ L ₂ 1 3/2 2P _{3/2} L ₃ 0 1/2 2S _½ M ₁ 1 1/2 2P _½ M ₂ 1 3/2 2P _{3/2} M ₃ 2 3/2 2D _{3/2} M ₄


AES peaks nomenclature: example Oxygen (KLL peak)

Estimated energy: 531-24-7-Φ Thus about 496 eV.

Measured 505 eV.

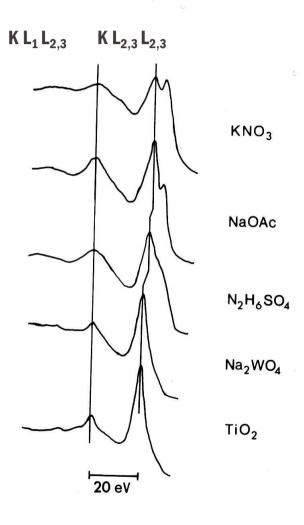
Not exactly exact because the energy levels are slightly different because one electron is missing when the Auger electron leaves.



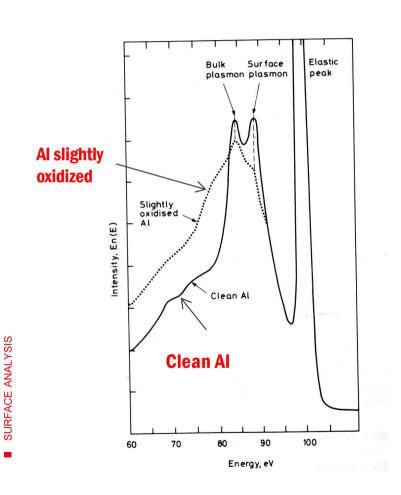
SURFACE ANALYSIS

EPFL

Auger electrons of the valence band


Example of the <u>transition KVV</u>

Other transitions, ex. LVV, are also possible


EPFL Chemic

Chemical information in AES: example O_{KLL}

Valence electrons: L_{2,3} The valence electrons are very sensitive to chemical bonds.

Loss peaks du to plasmon oscillations Al_{LMM}

Interaction with electrons of the conduction band. One can differentiate bulk and surface plasmons.

The observation of plasmons is a clear sign that the sample is metallic.

The graph shows the plasmon peaks below the peak of elastically backscattered electrons (with a small primary energy)

The plasmon peaks are also present below Auger transitions.

Calibration of the energy scale

- AES peaks are usually broad and therefore energy calibration is less stringent.
- For energy calibration the sample is illuminated by an electron beam of low known primary energy (typically 1keV) and the elastic backscattering peak measured by the analyzer is set to the primary energy.

Note that with CMA the distance sample surface to analyzer influences the measured kinetic energy, so the distance is adjusted in order to make primary and backscatter peak energies coinciding.

- 1. Introduction AES vs other techniques
- 2. Instrumentation
- 3. Spectral acquisition and interpretation
- 4. Quantification
- 5. Depth profiling
- 6. Applications

2 methods for quantification

1. Calculation of absolute concentrations using the Peakto-Background approach (N(E) spectra)

S. Mischler, H.E. Bishop, SURFACE AND INTERFACE ANALYSIS, VOL. 17, 315-319 (1991)

 Calculations using Relative atomic sensitivity factors as in XPS (dN(e)/dE spectra)

The intensity I_A of an AES peak

 $I_{A} = I_{P} C_{A} \sigma_{t} \gamma_{A} R \lambda \cos \Theta_{o} \sec \Theta_{i} TD$

I_A: Auger electron current for element A

I_P: Primary electron beam current

C_A: Atomic concentration of element A (atoms per unit volume)

 $\sigma_{\rm t}$: Ionization cross-section for primary beam energy E_p

 γ_A : Probability of Auger emission for given transition

R: Back-scattering factor for Auger production from a level with binding

energy E_b , for an electron beam angle of incidence Θ_l (vs surface normal)

 $\lambda(E_k)$: Inelastic mean free path of an electron with kinetic energy E_k

 Θ_{o} : Angle of emission of the Auger electron (vs surface normal)

 $T(E_k)$: Transmission function of the analyser

 $D(E_k)$: Efficiency of electron detector

The intensity I_A of an AES peak: simplified

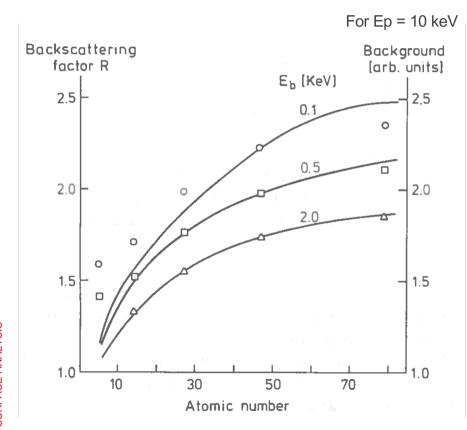
$I_{A} = kI_{p} C_{A} R(Z, \Theta_{i}) \lambda \cos \Theta_{o} \sec \Theta_{i}$

I_A: Auger electron current for element A

k: constant for given E, Auger transition and instrument settings

I_P: Primary electron beam current

C_A: Atomic concentration of element A (atoms per unit volume)


R: Back-scattering factor for Auger production from a level with binding

energy E_b , for an electron beam angle of incidence Θ_l (vs surface normal)

 $\lambda(E_k)$: Inelastic mean free path of an electron with kinetic energy E_k

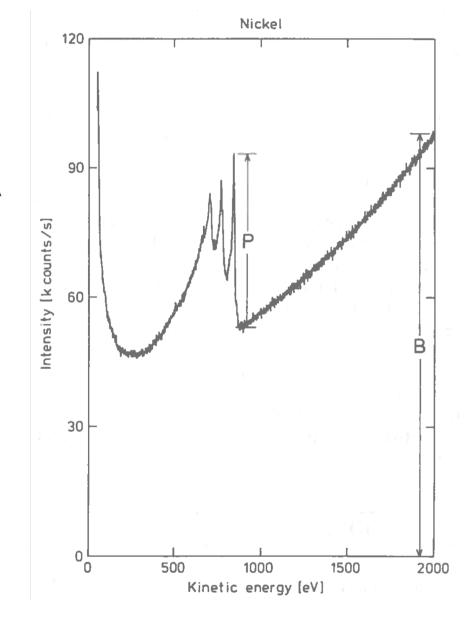
 Θ_{o} : Angle of emission of the Auger electron (vs surface normal)

AES background at 2keV as calibration of R

$$I_A/B = \beta_A \lambda C_A$$

B: background level at 2 keV (for Ep=10keV)

 β_A : constant for a particular transition, Ep and instrument. Does not depend on sample composition!

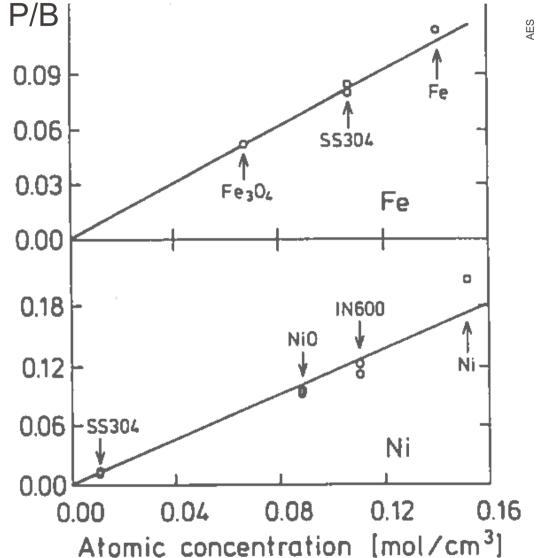

Example: Nickel

$$I_A/B = P/B = \beta_A \lambda C_A$$

 $C_A = P/(B \beta_A \lambda)$

 β_A needs to be calibrated

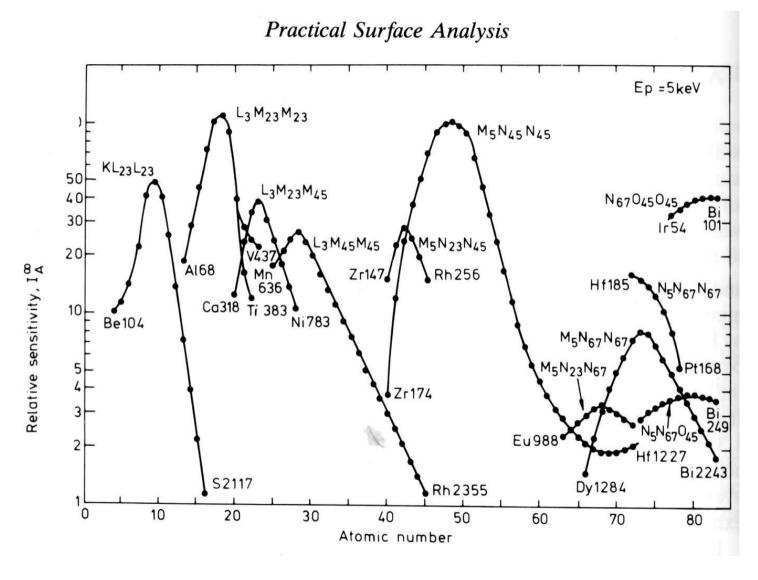
SURFACE ANALYSIS


λ can be calculated as in XPS

Calibration of β_A for iron and nickel

Quantification using P/B ratio:

- + direct determination of absolute atomic concentrations
- + independent on sample composition
- + no need to consider other element
- B at 2keV often overlap with AES peaks and thus not representative of backscattering factor R
- Calibration must be made for each instrument

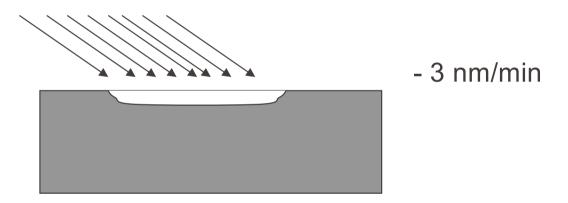


Quantitative analysis (homogeneous solids)

$$c_A = \frac{I_A / S_A}{\sum_{k=1}^n I_k / S_k} = \frac{I_A / RSF_A}{\sum_{k=1}^n I_k / RSF_k}$$

Relative atomic Sensitivity Factors (RSF) c_A: relative concentration

- The RSF are instrument specific, essentially because of different T and D factors.
- The RSF are highly matrix dependent
- RSF do not take into account backscattering effects when an element is present in a different environment than the one used for calibration. Example: C is calibrated on graphite and thus adventitious carbon contaminations are overestimated when materials of higher atomic number (larger backscattering) are analysed.



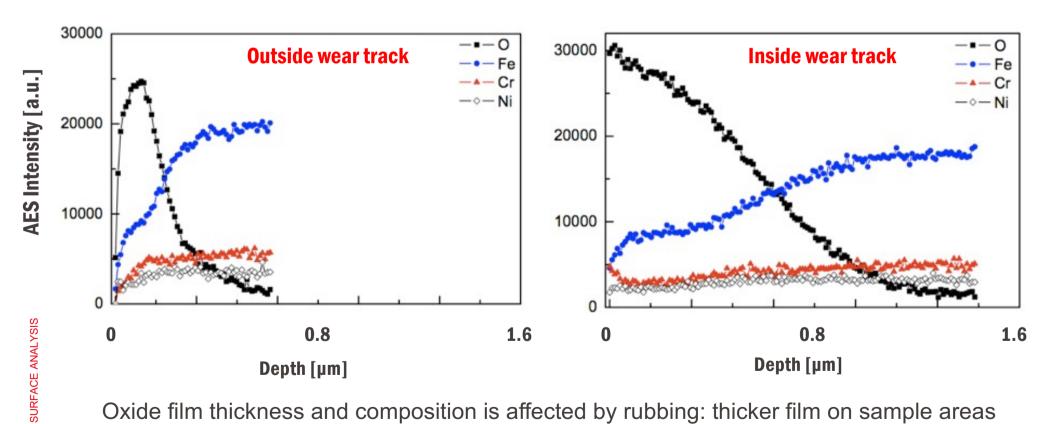
- 1. Introduction AES vs other techniques
- 2. Instrumentation
- 3. Spectral acquisition and interpretation
- 4. Quantification
- 5. Depth profiling
- 6. Applications

AES is usually combined with ion etching for depth profiling purposes

Erosion of the sample surface by an ion beam (ex Ar+ ions)

The etching rate is about constant in an homogeneous solid. With simultaneous XPS spectra -> depth profile.

Sometimes the ionic bombardment changes the surface composition!


Sputter rates

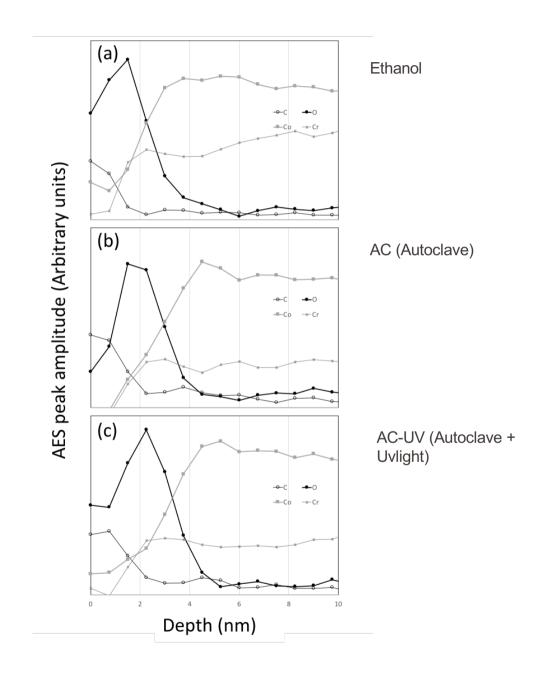
- Sputter rates are calibrated using standard think film of known thickness such as Ta₂O₅ or SiO₂ films
- They are usually expressed an thickness of removed material per unit time sputtering, i.e. nm/min
- The sputter rate depends on type of ions, their energy and they current

Sputter rated depend on materials

Material	Relative sputter rate at 4keV Ar-
Ta ₂ O ₅	1
Si	0.9
SiO ₂	0.9
Pt	2.2
Cr	1.4
Al	1
Au	4.1

Depth profiling on an oxide formed on stainless steel worn samples in pressurized high temperature water

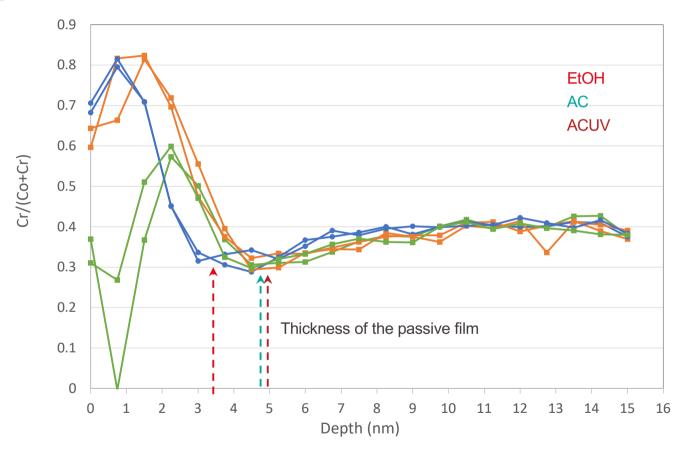
Oxide film thickness and composition is affected by rubbing: thicker film on sample areas subject to rubbing.


- 1. Introduction AES vs other techniques
- 2. Instrumentation
- 3. Spectral acquisition and interpretation
- 4. Quantification
- 5. Depth profiling
- 6. Applications

Applications fields of AES

- Thin film research
- Microelectronics
- Corrosion / Tribology
- Alloys
- **-**

Highly complementary technique to XPS


AESprofile of a CoCrMo alloy after different sterilization processes

SURFACE ANALYSIS

Chromium to Cobalt ratio as a function of sputter depth

Comparison AES and XPS

- Background / peak width: no influence of the source!!
- Kinetic energy: Independent of the primary e-beam energy
- AES is very strong for the analysis of metallic surfaces
- AES is more complex than XPS, and potentially contains more information. However, the interpretation is more difficult
- Imaging of AES has much better lateral resolution.